ICORD, Rome 2009.
Promises and risks of Bayesian analyses in trials of rare diseases

Dr Simon Day
simon.day@Roche.com

...and the hope of a magic solution

- Bayesian methods for clinical trials perceived (by some) as being far more efficient than "classical" statistical approaches
- Bayesian methods "take account" of what we already know and build on them; classical statistical methods look at each experiment in isolation

What do people claim?
(after Rich Simon, Jan 2009)

- Bayesian methods...
- Require smaller sample sizes
- Require less planning
- Are preferable for most problems in clinical trials
- Have been limited by computing problems

B

S

- Instead: " ayesian tatistics"

What's it really all about?

- We write down (in some formal way) what we believe about a treatment before we do an experiment (e.g. a clinical trial)
- The prior
- Then we do our trial
- And collect data
- Then we "update" what we now believe about the treatment
-The posterior

Thomas Bayes Who was he?

- Thomas Bayes
- Born 1701 (or 1702???), London
- Died 1761, Tunbridge Wells, England

Thomas Bayes

What' s he most famous for?

- "An Essay Towards Solving a Problem in the Doctrine of Chances" Philosophical Transactions of the Royal Society of London, 1763;53:370-418.

Thomas Bayes

What's he most famous for?

LII. An E Efay towards folving a Problem in the Doctrine of Cbances. By the late Rev. $M r$. Bayes, $F . R . S$. communicated by $M r$. Price, in a Letter to John Canton, A. M. F. R.S.

Dear Sir,
Read Dec. 23, T Now fend you an effay which I have 1763. found among the papers of our deceafed friend Mr. Bayes, and which, in my opinion, has great merit, and well deferves to be preferved.

Richard Price's covering letter...

> "I am sensible that your time is so much taken up that I cannot reasonably expect that you should minutely examine every part of what I now send you. Some of the calculations, particularly in the Appendix, no-one can make without a good deal of labour..."

\&c. There would therefore be an odds of about 923 to 76 , or nearly 12 to 1 againf/ his being right. Had he guefficd only in general that there were lefs than 9 blanks to a prize, there would have been a probability of his being right equal to .6589 , or the odds of 65 to 34 .
Again, fuppofe that he has heard 20 blanks drawn and 2 prizes; what chance will he have for being right if he makes the fame guefs?
Here X and x being the fame, we have $n=22$, $p=20, q=2, \mathrm{E}=231$, and the required chance equal to $\overline{n+1} \times \mathrm{E} \times \mathrm{X}^{p+1}-q \mathrm{X}^{p+2}+q \times q-1 \times \mathrm{X}^{p+3}$ equal to $\overline{n+1} \times \mathrm{E} \times \frac{\mathrm{X}}{p+1}-q \frac{\mathrm{X}+}{p+2} q \times \frac{q-1}{2} \times \frac{\mathrm{X}}{p+3}$ $-\overline{\frac{x^{p+1}}{p+1}-\frac{q x^{p+2}}{p+2}+q \times \frac{q-1}{2} \times \frac{x^{p+3}}{p+3}}=.108438 \mathrm{cc}$.

He will, therefore, have a better chance for being right than in the former inflance, the odds againft him now being 892 to 108 or about 9 to 1 . But fhould he only guefs in general, as before, that there were lefs than 9 blanks to a prize, his chance for being right will be worfe; for inftead of $.65^{89}$ or an odds of near two to one, it will be .584 , or an odds of 584 to 415 .

Suppofe,
"...Thomas Bayes's paper 'An Essay Towards Solving a Problem in the Doctrine of Chances' (1763), ... it ranks as one of the most famous, least understood, and controversial contributions in the history of science."

An example
A single arm trial for a promising new anticancer compound

- The "classical" approach

1. Decide on sample size (let's assume $n=30$)
2. Treat these (30) patients
3. Count the number of responders (let's say 6)
4. Estimate response rate $=6 / 30$ or 20%
5. 95% confidence interval 7.7% to 38.6%

An example
A single arm trial for a promising new anticancer compound

- The Bayesian approach

1. Set out what we already believe (prior)
2. Decide on sample size (let's assume $n=30$)
3. Treat these (30) patients
4. Count the number of responders (let's say 6)
5. Update what we now believe (posterior)

- Posterior probability
- 95% (credible) interval

Set out what we already know

We have some prior data suggesting
the response rate might be about 20\%

- And I' m really convinced
- Or l' m a fairly unsure
- I' m a sceptic (15\%)
- I' m an optimist (25%)
- Actually, I haven' t really got a clue

Set out what we already know

We have some prior data suggesting
the response rate might be about $\mathbf{2 0 \%}$

- And I' m really convinced
- Or I'm a fairly unsure
- I' m a sceptic (15\%)
- I' m an optimist (25\%)
- Actually, I haven't really got a clue

Decide on sample size

This may be exactly the same "classical" trial

- Wetreciefitinflniesal 30 patients
- We see 4 of them "respond"
- So I used to believe 25% was what I' d expect; now I have data suggesting it's only 13%
- I combine these two (25% and 13%) together...

Roche

The prior

The prior
The data

The prior

The data

The posterior

The prior (at 25\%) has "rescued" a trial that showed poor results (13\%)

But let's look at another example...

- And I' m really convinced
- Or I'm a fairly unsure
- I' m a sceptic (15%)
- I' m an optimist (25\%)
- Actually, I haven't really got a clue

We do the same experiment

- We recruit and treat 30 patients
- This time we see 10 of them "respond"
- So I used to believe 15% was what I' d expect; now I have data suggesting it's as good as 33\%
- I combine these two (15\% and 33\%) together...

Roche

The prior

The prior
The data

The prior

The data

The posterior

Now the prior (at 15\%) has "killed" a trial that showed good results (25\%)

Worst of all, we can abuse the system...

- reasonably
- And I' m reálly convinced
- Or l' m a fairly unsure
- I' m a sceptic (15%)
- I' m an optimist (25\%)
- Actually, I haven't really got a clue

We do a tiny "experiment"

- We recruit and treat 10 patients
- We see 1 of them "respond"
- So I used to believe 20% was what I' d expect; now I have data suggesting it's only 10%
- I combine these two (20% and 10%) together...

Roche

The prior

The prior

The data

The posterior

So the moral of the story...

- Bayesian thinking sounds very sensible
- We don' t do trials (experiments) in complete ignorance of what else is going on
- If we have genuine reasons to believe what the outcome might be, and we are prepared to state these honestly (and dispassionately)
- Then we ought to believe the posterior distribution

Everyone's own beliefs...

- Why should you accept my prior belief?
-Why should / accept your prior belief?
- Prior beliefs are personal, hence, posterior beliefs are also personal
'The Logic of Scientific Discovery'. Chapter I,
Section 8. London, Hutchinson, 1959.
"No matter how intense a feeling of conviction may be, it can never justify a statement. Thus I may be utterly convinced of the truth of a statement; certain of the evidence of my perceptions; overwhelmed by the intensity of my experience: every doubt may seem to be absurd. But does this afford the slightest reason for science to accept my statement? Can any statement be justified by the fact that Karl R Popper is utterly convinced of its truth? The answer is, 'No' ; and any other answer would be incompatible with the idea of scientific objectivity."

And my view...?

