Therapies for Two Rare Diseases

ICORD

Stockholm, Sweden

February 15, 2005

William A. Gahl, MD, PhD

Clinical Director, NHGRI Director, Intramural Program, Office of Rare Diseases

Therapies for Two Rare Diseases

- Cystinosis Cysteamine
- Alkaptonuria Nitisinone
- Generalizations Disease to Therapy

CYSTINOSIS

- Autosomal recessive
- 1/200,000 births
- Lysosomal storage disease due to impaired transport of cystine out of lysosomes.
 - High intracellular cystine content
 - Crystals in many tissues

Transmission EM of conjunctival cell

(Dr. T. Kuwabara)

Scanning EM of liver Kupfer cell

(Dr. Kamal Ishak)

CYSTINOSIS NATURAL HISTORY

Age <u>Clinical Manifestation</u>

Birth None

adulthood

Infancy Renal tubular Fanconi syndrome

Growth retardation

Early childhood Photophobia

Late childhood Renal failure (age 10 years)

Adolescence and Cerebral calcifications, diabetes

mellitus, retinal blindness,

myopathy, swallowing difficulty

Cystinosis - Therapy

Symptomatic

- Replacement of renal losses (citrate, phosphate, potassium, water, calcium)
- L-thyroxine, testosterone
- Growth hormone
- Cystine Depletion
 - Oral cysteamine (Cystagon^R)
 - Cysteamine eyedrops

HS-CH₂-CH₂-NH₂

CYSTEAMINE

MECHANISM OF CYSTINE DEPLETION BY CYSTEAMINE

Clinical Trials of Oral Cysteamine

- National Collaborative Cysteamine Study I (1978-1985)
 - San Diego, Michigan, NIH; historical controls
 - Calculated creatinine clearance
 - Cysteamine group did better than controls
- Study of cysteamine doses & forms (1992)
 - No difference: cysteamine and phosphocysteamine;
 low (60 mg/kg/day) and high (90 mg/kg/day) dose
 - All groups did well (renal function and growth)
- Intent to treat analysis (1960-1992)

NIH Intent-to-treat Analysis for Oral Cysteamine; All Patients 1960-92

- Cysteamine treatment
 - Excellent (17): Started < age 2 y; median leucocyte cystine <2 nmol half-cystine/mg protein
 - **Partial (32)**
 - -None (67)
- Creatinine clearances <u>measured</u> based upon repeat serum creatinines and 2025 inpatient 24-hour urine collections

NIH Intent-to-treat Analysis for Oral Cysteamine (1960-1992)

Predicted age at which creat clearance

is zero (years)

Treatment

No cysteamine 9.5
Partial cysteamine 20.0
Excellent cysteamine 74.3

New Drug Approval

- Timetable: Parke-Davis (1-2 y); Mylan (1-2 y); FDA (<1 y)
- FDA Interactions
 - Intent-to-treat study was valued; all patients included.
 - No animal studies required; historical controls accepted.
 (Nearly all known patients were already treated.)
 - Approved for pre-transplant patients only, since evidence was for prevention of renal deterioration. (Post-transplant use is off-label.)
- Cost remains reasonable.
 - ~\$2000-\$5000/year
 - Unlike some other orphan drugs

Cystagon: Approved August 15, 1994

Renal Failure in Cystinosis

ORAL CYSTEAMINE THERAPY

<u>Age (y)</u>		Height	Creatinine Clearance
MEA	Present	<u>(cm - %)</u>	(mL/min/1.73 m ²)
1.0	12.5	159 - 75%	111
1.1	16.0	164 - 10%	52
1.2	13.6	152 - 15%*	108
1.5	10.3	133 - 15%	67
1.5	12.9	149 - 15%	41
0.5 sib	11.5	143 - 25%	78
1.7	16.7	165 - 10%*	58
1.7	12.9	149 - 25%	62
0.2 sib	6.9	127 - 80%	62

Cystinosis - Outcomes

Born in

- 1955 Death in infancy/childhood
- 1965 Death or transplant, complications
- 1975 Death or transplant, complications
- 1985 to present
 - ->age 2, delay in transplant
 - <age 1,? No transplant needed</p>
 - Expect no late complications

CYSTEAMINE THERAPY (CYSTINOSIS)

- Oral cysteamine, started early, offers good preservation of renal function and growth.
 - It also helps thyroid & muscle.
 - It does not benefit the cornea, where cystine crystal accumulation continues.
- Proposal: Cysteamine eyedrops could dissolve corneal cystine crystals.

Cysteamine Eyedrop Studies

- Double-blind, placebo-controlled trials
 - New England Journal of Medicine, 1987
 - Archives of Ophthalmology, 1990
- Natural history study of corneal crystal accumulation
 - To demonstrate to the FDA that crystals do not spontaneously dissolve.

Cysteamine Eyedrops' Sponsorship

- Sigma-Tau Pharmaceuticals, Inc., began sponsorship ~1996.
 - Most data provided by NIH; one companysponsored study.
 - Sigma-Tau hired:
 - A company to make human-use cysteamine-HCl.
 - A consultant for NDA submission.
 - A company to put NIH studies in proper format.
- Near to NDA application-early 2005.

Library of Corneal Crystal Densities

Corneal Crystal Accumulation

CYSTEAMINE EYEDROPS

Untreated

20-year old

3-year old

Treated

Cysteamine Eyedrop Therapy

Cysteamine Eyedrop Therapy

Cysteamine Eyedrop Therapy

Therapies for Two Rare Diseases

- Cystinosis Cysteamine
- Alkaptonuria Nitisinone
- Generalizations Disease to Therapy

ALKAPTONURIA

- Autosomal recessive
 - Homogentisic acid dioxygenase deficiency
- HGA accumulation causes ochronosis
 - Blackening and destruction of cartilage and connective tissue
 - Spine, hips, knees, shoulders, aortic valve

Alkaptonuria-Natural History

(Sixty-four individuals age 4 to 80 were evaluated.)

A B C D

Joint replacement

Cardiac valve involvement

Renal stones

Coronary artery calcification

Nitisinone

• 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione.

- Licensed to Swedish Orphan International AB.
- Treatment of choice for tyrosinemia type I, a fatal liver disorder of children.
- Approved for human use in the U.S. in January of 2002 as Orfadin.

Nitisinone in Alkaptonuria-Study #1

- Two female patients age 51 and 59.
- Initial dosage 0.01 mg/kg/day (divided bid), or one-hundredth the per-kg dose used in tyrosinemia type I.
- One patient received 0.04 mg/kg/day.
- Stop drug if plasma tyrosine > 500 μ M.
- Urinary HGA fell by at least 69%.
- No corneal signs or symptoms.

Plasma Tyrosine (μM)

Nitisinone in Alkaptonuria-Study #2

- Incremental dosing regimen (0.35mg, 1.05mg, 4.0mg bid) to see how much nitisinone is required to lower urinary HGA to <0.5 g/day.
- No plasma tyrosine limit; watch for corneal signs and symptoms for 3 months on chosen dose.
- Mild protein restriction final week.
- 10 patients to be enrolled.

Patient #1

<u>Day</u>	NTBC (mg/day)	Urine HGA (mg/day)	Plasma Tyr (µM)
0	0	3474	62
1	0.7	958	312
3	0.7	545	529
5	0.7	944	615

358

220

214

140-194

143-375

77

662

721

757

598-844

512-958

231

8

11

13

15-21

26-77

84 (diet)

2.1

2.1

2.1

2.1

2.1

2.1

Color changes of alkalinized urine in an alkaptonuria patient receiving nitisinone

Summary-Nitisinone

- 2.1 mg per day lowered urinary homogentisic acid by ~95%.
- Plasma tyrosine rose \sim 10-fold to \sim 800 μ M.
- No corneal side effects.
- Adverse events:
 - Passing of pre-existing renal stones.
 - Recognition of aortic stenosis symptoms.
 - Increased liver function tests.

PLANS

- Perform a long-term trial of nitisinone for safety and efficacy.
 - Primary outcome parameter: Internal + external hip rotation.
 - Secondary outcome parameters: Other ranges of motion, 6-minute walk, etc.
 - Extensive clinical and lab safety measurements.

Therapies for Two Rare Diseases

- Cystinosis Cysteamine
- Alkaptonuria Nitisinone
- Generalizations Disease to Therapy

Rare Disease Therapies: Generalizations

- You must acquire expertise in a disorder before you can treat it.
- Knowing the causative gene may not be necessary.
- Drug therapy remains optimal
 - It reaches ~all tissues.
 - Currently, gene therapy is difficult to target safely.
- It takes a long time:
 - Cysteamine: 1976-1987-1994
 - Cysteamine eyedrops: 1987-2005?
 - Nitisinone: 1998-2002-2008?

Rare Disease Therapies: Generalizations

- Assistance is available from:
 - Office of Rare Diseases
 - Office of Orphan Products Development
 - Family groups, drug companies, metabolic physicians
- Investigational (IND) studies are not enough. New Drug Approval (NDA) is necessary for marketing.
- A pharmaceutical company is needed to make a drug available to the community (NDA).
- Regulatory agencies can be lenient with orphan indications.
- The entire world needs these drugs.